PL-4

AROMATIC COMPOUNDS WITH NEW FLUORINE-CONTAINING SUBSTITUENTS

L. M. Yagupolskii

Institute of Organic Chemistry of the Academy of Sciences of the Ukrainian SSR, Kiev, 252660 (U.S.S.R.)

The introduction of the strong electron-accepting fluorine-containing substituents into the aromatic moiety allows obtaining the compounds with unique properties.

Determination of the electronic nature of the grouping $(R_f)_2$ PO in the recently prepared arylbis(perfluoroalkyl)phosphine oxides has shown that this substituent is comparable with R_e SO₂, one of the most electron-accepting groups.

A general principle for the construction of the new superstrong electron-accepting substituents through the replacement of oxygen atoms for trifluoromethylsulphonylimino group is proposed. For example, when the oxygen atoms in CF₃SO and CF₃SO₂ groups are replaced for CF₃SO₂N=, the new stable and more electron-accepting than all ever known substituents are formed.

The grouping CF₃S(0)=NSO₂CF₃ corresponds to two nitro groups. The similar growth of electron-accepting ability is observed as well in the groupings derived from other elements in the case of replacement of oxygen stoms for CF₃SO₂N= group.